<table>
<thead>
<tr>
<th>Time</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Pac</td>
<td>257.5</td>
</tr>
<tr>
<td>44 sec</td>
<td>255.6</td>
</tr>
<tr>
<td>58 sec</td>
<td>255.3</td>
</tr>
<tr>
<td>1</td>
<td>254.5</td>
</tr>
<tr>
<td>1:30</td>
<td>254.5</td>
</tr>
<tr>
<td>1:45</td>
<td>255.0</td>
</tr>
<tr>
<td>2:0</td>
<td>255.3</td>
</tr>
<tr>
<td>2:45</td>
<td>255.5</td>
</tr>
<tr>
<td>3:30</td>
<td>259.5</td>
</tr>
<tr>
<td>4:30</td>
<td>260.0</td>
</tr>
<tr>
<td>5:00</td>
<td>260.5</td>
</tr>
<tr>
<td>6:30</td>
<td>261.0</td>
</tr>
<tr>
<td>8:00</td>
<td>262.0</td>
</tr>
<tr>
<td>12:30</td>
<td>262.5</td>
</tr>
<tr>
<td>16:00</td>
<td>263.0</td>
</tr>
<tr>
<td>18:00</td>
<td>263.4</td>
</tr>
<tr>
<td>20:00</td>
<td>263.5</td>
</tr>
</tbody>
</table>
PUMPING TEST RECORD

for
HANAPERE
(Water)
(No.)

KAWA
Island
17-M-17
Project or Job No.
Feb. 28-1966

Description of Well--
1. Elevation: ground surface ___ ft., top of casing ___ ft., rotary ___ ft., referenced to benchmark.
2. Total depth of well ___ ft.; or ___ ft. elevation, msl.
3. ___ in. solid casing to ___ ft. depth, perforated to ___ ft. depth.
4. Static water level on Feb. 24, 1966: ___ ft. below ground surface, top of casing; or ___ ft. elevation, msl.
 Measured by ___ method.

Description of Pump and Pump Setting--
5. Turbine type pump with 24-stage bowl assembly
6. Gasoline diesel, electric, power with ___ horsepower.
7. 1/1 Shaft speed: ___ rpm at ___ gpm flow.
8. Depth of pump intake:
 - ___ ft. below ground surface; or ___ ft. elevation, msl
9. Depth of airline bottom: ___ ft. below ground surface; or ___ ft. elevation, msl.
10. Center of gage: ___ ft. elevation, msl.
 Flow measured with ___ method.
11. Test conducted by ___.

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Pumping Rate (gpm)</th>
<th>Airline, Manometer Rdgs (inches, psi)</th>
<th>Drawdown (feet)</th>
<th>Chlorides (ppm)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/24/66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:06</td>
<td>0</td>
<td>273.0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10:06</td>
<td>0</td>
<td>273.5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10:05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:08</td>
<td>5.0</td>
<td>185.0</td>
<td>88.5</td>
<td>7.38</td>
<td></td>
</tr>
<tr>
<td>10:11</td>
<td>5.0</td>
<td>188.0</td>
<td>85.5</td>
<td>7.13</td>
<td>37.5</td>
</tr>
<tr>
<td>10:20</td>
<td>5.0</td>
<td>185.0</td>
<td>88.5</td>
<td>7.38</td>
<td>37.5</td>
</tr>
<tr>
<td>10:30</td>
<td>5.0</td>
<td>181.0</td>
<td>92.5</td>
<td>7.11</td>
<td>37.5</td>
</tr>
<tr>
<td>10:50</td>
<td>5.0</td>
<td>176.5</td>
<td>97.0</td>
<td>8.08</td>
<td>37.5</td>
</tr>
<tr>
<td>11:00</td>
<td>5.0</td>
<td>174.5</td>
<td>99.0</td>
<td>8.25</td>
<td>37.5</td>
</tr>
<tr>
<td>11:30</td>
<td>4.9</td>
<td>171.5</td>
<td>102</td>
<td>8.50</td>
<td>37.5</td>
</tr>
<tr>
<td>11:37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:40</td>
<td>5.0</td>
<td>164.5</td>
<td>109.0</td>
<td>9.08</td>
<td>37.5</td>
</tr>
<tr>
<td>11:45</td>
<td>4.9</td>
<td>161.5</td>
<td>109.0</td>
<td>9.08</td>
<td>37.5</td>
</tr>
<tr>
<td>11:55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:56</td>
<td>255.0</td>
<td>185 154</td>
<td>154</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>11:57</td>
<td>255.0</td>
<td>154 154</td>
<td></td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>11:58-10</td>
<td>269.5 (inject air)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>260.5</td>
<td>108 1.08</td>
<td>1.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:14</td>
<td>262.0</td>
<td>0.96 0.96</td>
<td>0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:24</td>
<td>263.0</td>
<td>0.88 0.88</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>263.5</td>
<td>0.83 0.83</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PUMPING TEST RECORD

Well: Z5-1

Project or Job No.: 19

Island: Project or Job No. 19

Description of Well--
1. **Elevation:** ground surface _ft., top of casing _ft., table _ft., referenced to __________ benchmark.
2. **Total depth of well:** _ft.; or _ft. elevation, msl.
3. **In. solid casing to _ft. depth, perforated to _ft. depth**.
4. **Static water level on ___________ ft. below ground surface, top of casing; or ___________ ft. elevation, msl measured ___________ method.

Description of Pump and Pump Setting--
5. **Type pump with _ stage bowl assembly**
6. **Gasoline, diesel, electric, power with _ horsepower**
7. **Shaft speed:** _ rpm at _ gpm flow.
8. **Depth of pump intake:** _ ft. below _; or _ ft. elevation, msl.
9. **Depth of airline bottom:** _ ft. below _; or _ ft. elevation, msl.
10. **Center of gage:** _ ft. elevation, msl. Flow measured with _
11. **Test conducted by ___________**

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Pumping Rate (gpm)</th>
<th>Airline, manometer Rdgs</th>
<th>Drawdown (feet)</th>
<th>Chlorides (ppm)</th>
<th>Temperature (OF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/18, 12:25</td>
<td>140</td>
<td>0</td>
<td>264.5</td>
<td>.75</td>
<td></td>
</tr>
<tr>
<td>7/18, 12:30</td>
<td>145</td>
<td>265.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start Pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 1:43</td>
<td></td>
<td>0</td>
<td>264.0</td>
<td>.70</td>
<td></td>
</tr>
<tr>
<td>7/18, 1:50</td>
<td></td>
<td>266.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 1:55</td>
<td></td>
<td>Stop Pump, Engine Repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 2:00</td>
<td></td>
<td>500</td>
<td>164.9</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>7/18, 2:05</td>
<td></td>
<td>169.5</td>
<td>106"</td>
<td>8.83</td>
<td>39.0</td>
</tr>
<tr>
<td>7/18, 2:30</td>
<td></td>
<td>49.2</td>
<td>169.0</td>
<td>104.5</td>
<td>8.71</td>
</tr>
<tr>
<td>7/18, 2:35</td>
<td></td>
<td></td>
<td>15"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 2:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 2:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 2:50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 3:00</td>
<td></td>
<td></td>
<td>261.5</td>
<td>2'' Recovery</td>
<td></td>
</tr>
<tr>
<td>7/18, 3:11</td>
<td></td>
<td></td>
<td>262</td>
<td>11.5'</td>
<td>0.96</td>
</tr>
<tr>
<td>7/18, 3:13</td>
<td></td>
<td></td>
<td>262.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 3:15</td>
<td></td>
<td></td>
<td>262.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 3:20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 3:25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 3:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 3:35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 3:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 3:45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 3:50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 3:55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/18, 4:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PUMPING TEST RECORD

Handwritten Well No. 25-1

Island ____________ Project or Job No. ______ 19

Description of Well
1. Elevation: ground surface ft., top of casing ft., rotary ft., referenced to [benchmark]
2. Total depth of well ft.; or ft. elevation, msl
3. in. solid casing to ft. depth, perforated to ft. depth
4. Static water level on 19 ft. below ground surface, top of casing; or ft. elevation, msl measured method

Description of Pump and Pump Setting
5. type pump with stage bowl assembly
6. Gasoline diesel, electric, power with horsepower
7. Shaft speed: rpm at gpm flow
8. Depth of pump intake: ft. below ; or ft. elevation, msl
9. Depth of airline bottom: ft. below ; or ft. elevation, msl
10. Center of gage: ft. elevation, msl. Flow measured with

Date & Pumping Airline, manometer Rdgs

<table>
<thead>
<tr>
<th>Time</th>
<th>Pumping</th>
<th>Airline, manometer Rdgs</th>
<th>Drawdown</th>
<th>Chlorides</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rate (gpm)</td>
<td>(psi)</td>
<td>(feet)</td>
<td>(feet)</td>
<td>(ppm)</td>
</tr>
<tr>
<td></td>
<td>4:15</td>
<td>200.5</td>
<td>7</td>
<td>.58</td>
<td></td>
</tr>
<tr>
<td>6:30</td>
<td>0</td>
<td>165.5</td>
<td>8</td>
<td>.67</td>
<td></td>
</tr>
<tr>
<td>6:30</td>
<td>Start Pump</td>
<td>4</td>
<td>44.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:38</td>
<td>500</td>
<td>168.5</td>
<td>105</td>
<td>8.75</td>
<td>38</td>
</tr>
<tr>
<td>6:40</td>
<td>Adjust Value</td>
<td>4</td>
<td>166.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:45</td>
<td>500</td>
<td>166.0</td>
<td>105.5</td>
<td>8.6</td>
<td>73</td>
</tr>
<tr>
<td>6:30</td>
<td>167.0</td>
<td>106.5</td>
<td>8.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td>492</td>
<td>165.8</td>
<td>106.0</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>500</td>
<td>163.5</td>
<td>110</td>
<td>9.17</td>
<td></td>
</tr>
<tr>
<td>8:10</td>
<td>492</td>
<td>156.0</td>
<td>117.5</td>
<td>9.32</td>
<td></td>
</tr>
<tr>
<td>9:15</td>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6:35</td>
<td>464</td>
<td>156</td>
<td>117.5</td>
<td>9.79</td>
<td>38</td>
</tr>
<tr>
<td>9:00</td>
<td>480</td>
<td>155</td>
<td>116.5</td>
<td>9.87</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>480</td>
<td>151.6</td>
<td>117</td>
<td>10.17</td>
<td>38.5</td>
</tr>
<tr>
<td>11:00</td>
<td>472</td>
<td>148.5</td>
<td>118.5</td>
<td>10.4</td>
<td>38.4</td>
</tr>
<tr>
<td>12:20</td>
<td>468</td>
<td>141.0</td>
<td>126</td>
<td>10.54</td>
<td>38.6</td>
</tr>
<tr>
<td>3:16</td>
<td>143.5</td>
<td>130</td>
<td>10.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>462</td>
<td>143.5</td>
<td>130</td>
<td>10.82</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>460</td>
<td>142.0</td>
<td>131.5</td>
<td>10.46</td>
<td>38.5</td>
</tr>
<tr>
<td>3:00</td>
<td>455</td>
<td>139.5</td>
<td>134</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>10:75</td>
<td>455</td>
<td>139.5</td>
<td>134</td>
<td>11.33</td>
<td>39.0</td>
</tr>
</tbody>
</table>
PUMPING TEST RECORD

for

HANAPPS

Well 25-1

(name) (No.)

Island ______________ Project or Job No. ______ 19

Description of Well--
1. Elevation: ground surface ____ ft., top of casing ____ ft., referenced to benchmark
2. Total depth of well ____ ft.; or ____ ft. elevation, msl
3. ____ in. solid casing to ____ ft. depth, perforated to ____ ft. depth
4. Static water level on ____ ft. below ground surface, top of casing, or ____ ft. elevation, msl

Description of Pump and Pump Setting--
5. ____ type pump with ____ stage bowl assembly
6. Gasoline diesel, electric, power with ____ horsepower
7. Shaft speed: _____ rpm at ______ gpm flow
8. Depth of pump intake: ____ ft. below ____; or ____ ft. elevation, msl
9. Depth of airline bottom: ____ ft. below ____; or ____ ft. elevation, msl
10. Center of gage: ____ ft. elevation, msl. Flow measured with ____
11. Test conducted by __

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Pumping rate (gpm)</th>
<th>Airline, manometer Rdgs</th>
<th>Drawdown (feet)</th>
<th>Chlorides (ppm)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:28</td>
<td>8:28</td>
<td>24.5°</td>
<td>26°</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>7:13</td>
<td>24.5°</td>
<td>26°</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:15</td>
<td>7:15</td>
<td>24.5°</td>
<td>26°</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>7:50</td>
<td>7:50</td>
<td>24.5°</td>
<td>26°</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>8:28</td>
<td>8:28</td>
<td>24.5°</td>
<td>26°</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>9:30</td>
<td>15°</td>
<td>16.5</td>
<td>9.10</td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>9:30</td>
<td>15°</td>
<td>16.5</td>
<td>9.10</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>10:00</td>
<td>15°</td>
<td>16.5</td>
<td>9.10</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>1:00</td>
<td>15°</td>
<td>16.5</td>
<td>9.10</td>
<td></td>
</tr>
</tbody>
</table>

[Table continues with similar entries]
PUMPING TEST RECORD

Hanapepe Well 25-1

<table>
<thead>
<tr>
<th>Name</th>
<th>Project or Job No.</th>
<th>19</th>
</tr>
</thead>
</table>

Island Project or Job No. 19

Description of Well--
1. Elevation: ground surface ft., top of casing ft., referenced to benchmark
2. Total depth of well ft.; or ft. elevation, msl
3. _____ in. solid casing to _____ ft. elevation, perf. to _____ ft. depth
4. Static water level on _____ ft. below ground surface, top of casing; or _____ ft. elevation, msl measured _____ method

Description of Pump and Pump Setting--
5. _____ type pump with _____ stage bowl assembly
6. Gasoline diesel, electric, power with _____ horsepower
7. Shaft speed: _____ rpm at _____ gpm flow
8. Depth of pump intake: _____ ft. below _____; or _____ ft. elevation, msl
9. Depth of airline bottom: _____ ft. below _____; or _____ ft. elevation, msl
10. Center of gage: _____ ft. elevation, msl. Flow measured with _____
11. Test conducted by: __

Date, Pumping & Airline, manometer Rdgs

<table>
<thead>
<tr>
<th>Time & Rate (gpm)</th>
<th>Airline, manometer Rdgs</th>
<th>Drawdown (feet)</th>
<th>Chlorides (ppm)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30 pm</td>
<td>45.8</td>
<td>129.0</td>
<td>164.5</td>
<td>12.05</td>
</tr>
<tr>
<td>4:30 am</td>
<td>Reduction engine speed and adjust valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00 am</td>
<td>350</td>
<td>179.5</td>
<td>94.0</td>
<td>7.73</td>
</tr>
<tr>
<td>4:10 am</td>
<td>353</td>
<td>181.5</td>
<td>92.0</td>
<td>7.66</td>
</tr>
<tr>
<td>4:15 am</td>
<td>353</td>
<td>181.5</td>
<td>92.0</td>
<td>7.66</td>
</tr>
<tr>
<td>4:30 am</td>
<td>354</td>
<td>182.5</td>
<td>91.0</td>
<td>7.58</td>
</tr>
<tr>
<td>4:45 am</td>
<td>350</td>
<td>183.5</td>
<td>90.5</td>
<td>7.52</td>
</tr>
<tr>
<td>5:00 am</td>
<td>348</td>
<td>186.5</td>
<td>87.0</td>
<td>7.25</td>
</tr>
<tr>
<td>5:30 am</td>
<td>353</td>
<td>182.5</td>
<td>91.0</td>
<td>7.58</td>
</tr>
<tr>
<td>6:00 am</td>
<td>354</td>
<td>182.0</td>
<td>91.5</td>
<td>7.63</td>
</tr>
<tr>
<td>7:00 am</td>
<td>356</td>
<td>182.0</td>
<td>91.5</td>
<td>7.63</td>
</tr>
<tr>
<td>8:00 am</td>
<td>356</td>
<td>181.5</td>
<td>92.0</td>
<td>7.67</td>
</tr>
<tr>
<td>8:05 am</td>
<td>ENGINE Missing. [Check]</td>
<td>Check Engine, & carburetor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:10 am</td>
<td>Adjust valve 1350 gpm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:15 am</td>
<td>348</td>
<td>179.5</td>
<td>7.83</td>
<td></td>
</tr>
<tr>
<td>8:17 am</td>
<td>Fix carburetor & Adjust valve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8:20 am</td>
<td>356</td>
<td>181.0</td>
<td>92.5</td>
<td>7.71</td>
</tr>
<tr>
<td>8:30 am</td>
<td>353</td>
<td>181.0</td>
<td>92.5</td>
<td>7.71</td>
</tr>
<tr>
<td>9:00 am</td>
<td>343</td>
<td>187.0</td>
<td>8.65</td>
<td>7.21</td>
</tr>
<tr>
<td>9:05 am</td>
<td>Adjust valve to 3502 Motor Missing. Adjust Carburetor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:10 am</td>
<td>Adjust Valve</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above includes test data such as time, pumping rate, airline manometer readings, drawdown, chlorides, and temperature. The testing was conducted by an unspecified individual.
PUMPING TEST RECORD

for HANAPAPE
Well 25-1

Island Project or Job No. 19

Description of Well--
1. Elevation: ground surface ___ ft., top of casing ___ ft., referenced to benchmark
2. Total depth of well ___ ft.; or ___ ft. elevation, msl
3. ___ in. solid casing to ___ ft. depth, perforated to ___ ft. depth
4. Static water level on ___ ft. below ground surface, top of casing; or ___ ft. elevation, msl

Description of Pump and Pump Setting--
5. _______ type pump with ___ stage bowl assembly
6. Gasoline, diesel, electric, power with ___ horsepower
7. Shaft speed: _______ rpm at _______ gpm flow
8. Depth of pump intake: ___ ft. below ___; or ___ ft. elevation, msl
9. Depth of airline bottom: ___ ft. below ___; or ___ ft. elevation, msl
10. Center of gage: ___ ft. elevation, msl. Flow measured with _______ method
11. Test conducted by __

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Pumping rate (gpm)</th>
<th>Airline, manometer Rdgs (psi)</th>
<th>Airline, manometer Rdgs (feet)</th>
<th>Drawdown (feet)</th>
<th>Chlorides (ppm)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:13</td>
<td>9:13</td>
<td>352</td>
<td>181.0</td>
<td>92.5</td>
<td>7.75</td>
<td></td>
</tr>
<tr>
<td>9:20</td>
<td>9:20</td>
<td>355</td>
<td>181.0</td>
<td>92</td>
<td>7.75</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>10:00</td>
<td>356</td>
<td>180.5</td>
<td>93</td>
<td>7.75</td>
<td></td>
</tr>
<tr>
<td>10:40</td>
<td>10:40</td>
<td>362</td>
<td>178.5</td>
<td>95</td>
<td>7.75</td>
<td></td>
</tr>
<tr>
<td>12:45</td>
<td>12:45</td>
<td>Adjust Valve</td>
<td></td>
<td></td>
<td>7.75</td>
<td></td>
</tr>
<tr>
<td>13:50</td>
<td>13:50</td>
<td>350</td>
<td>181.5</td>
<td>92</td>
<td>7.67</td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>14:00</td>
<td>352</td>
<td>181.5</td>
<td>92</td>
<td>7.67</td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td>14:30</td>
<td>Adjust Goosene</td>
<td></td>
<td></td>
<td>7.67</td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>13:00</td>
<td>349</td>
<td>184</td>
<td>91.5</td>
<td>7.63</td>
<td></td>
</tr>
<tr>
<td>13:20</td>
<td>13:20</td>
<td>352</td>
<td>183</td>
<td>91.5</td>
<td>7.63</td>
<td></td>
</tr>
<tr>
<td>14:10</td>
<td>14:10</td>
<td>Adjust Valve</td>
<td></td>
<td></td>
<td>7.63</td>
<td></td>
</tr>
<tr>
<td>14:30</td>
<td>14:30</td>
<td>350</td>
<td>183</td>
<td>90.5</td>
<td>7.55</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>15:00</td>
<td>349</td>
<td>184</td>
<td>91</td>
<td>7.58</td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>16:00</td>
<td>349</td>
<td>184.5</td>
<td>91</td>
<td>7.58</td>
<td>41.5</td>
</tr>
<tr>
<td>17:01</td>
<td>17:01</td>
<td>Engine missing - 12:50 Engine OK</td>
<td></td>
<td></td>
<td>7.55</td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>18:00</td>
<td>356</td>
<td>17.5</td>
<td>96.5</td>
<td>8.04</td>
<td>40.0</td>
</tr>
<tr>
<td>19:00</td>
<td>19:00</td>
<td>356</td>
<td>17.5</td>
<td>96.5</td>
<td>8.04</td>
<td>73</td>
</tr>
<tr>
<td>20:00</td>
<td>20:00</td>
<td>349</td>
<td>184</td>
<td>91.5</td>
<td>7.58</td>
<td></td>
</tr>
<tr>
<td>21:00</td>
<td>21:00</td>
<td>349</td>
<td>184</td>
<td>91.5</td>
<td>7.58</td>
<td></td>
</tr>
</tbody>
</table>
PUMPING TEST RECORD

HANAPÈPE for Well Z5-1

| Island | Project or Job No. | 19 |

Description of Well--
1. Elevation: ground surface ft., top of casing ft., referenced to benchmark
2. Total depth of well ft.; or ft. elevation, msl
3. in. solid casing to ft. depth, perforated to ft. depth
4. Static water level on ft. below ground surface, top of casing; or ft. elevation, msl measured method

Description of Pump and Pump Setting--
5. type pump with stage bowl assembly
6. Gasoline diesel, electric, power with horsepower
7. Shaft speed: rpm at gpm flow
8. Depth of pump intake: ft. below ; or ft. elevation, msl
9. Depth of airline bottom: ft. below ; or ft. elevation, msl
10. Center of gage: ft. elevation, msl. Flow measured with
11. Test conducted by

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Pumping rate (gpm)</th>
<th>Airline, manometer Rdgs</th>
<th>Drawdown (feet)</th>
<th>Chlorides (ppm)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:06</td>
<td>25.0</td>
<td>177.5</td>
<td>96.0</td>
<td>8.00</td>
<td>40.1</td>
</tr>
<tr>
<td>3:26</td>
<td>34.9</td>
<td>Engine missing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td>35.2</td>
<td>184.5</td>
<td>96.0</td>
<td>7.42</td>
<td>73</td>
</tr>
<tr>
<td>5:00</td>
<td>35.2</td>
<td>178.5</td>
<td>95.0</td>
<td>7.91</td>
<td>73</td>
</tr>
<tr>
<td>6:00</td>
<td>35.0</td>
<td>178.5</td>
<td>95.0</td>
<td>7.91</td>
<td>73</td>
</tr>
</tbody>
</table>

Adjust Valve

Adjust Valve

Adjust Valve

Adjust Valve
PUMPING TEST RECORD

HANAPPS for Well 25-1

<table>
<thead>
<tr>
<th>Island</th>
<th>Project or Job No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>_____19 ___</td>
</tr>
</tbody>
</table>

Description of Well

1. Elevation: ground surface __ ft., top of casing __ ft., referenced to __ benchmark.
2. Total depth of well __ ft.; or __ ft. elevation, msl.
3. __ in. solid casing to __ ft. depth, perforated to __ ft. depth.
4. Static water level on __ ft. below ground surface, top of casing; or __ ft. elevation, msl measured __ method.

Description of Pump and Pump Setting

5. __ type pump with __ stage bowl assembly.
6. Gasoline diesel, electric, power with __ horsepower.
7. Shaft speed: __ rpm at __ gpm flow.
8. Depth of pump intake: __ ft. below __; or __ ft. elevation, msl.
9. Depth of airline bottom: __ ft. below __; or __ ft. elevation, msl.
10. Center of gage: __ ft. elevation, msl. Flow measured with __.
11. Test conducted by _____________.

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Pumping rate (gpm)</th>
<th>Airline, manometer Rdgs</th>
<th>Drawdown (feet)</th>
<th>Chlorides (ppm)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2820 9:00</td>
<td>348</td>
<td>189.0</td>
<td>84.5</td>
<td>7.04</td>
<td>40.5</td>
</tr>
<tr>
<td>2850 9:30</td>
<td>353</td>
<td>185.0</td>
<td>81.5</td>
<td>7.30</td>
<td>73.0</td>
</tr>
<tr>
<td>2858 10:00</td>
<td>349</td>
<td>184.0</td>
<td>80.0</td>
<td>7.41</td>
<td>74.0</td>
</tr>
<tr>
<td>2940 11:00</td>
<td>356</td>
<td>182.0</td>
<td>69.5</td>
<td>7.4</td>
<td>75.0</td>
</tr>
<tr>
<td>11:15 Clean</td>
<td>352</td>
<td>175.5</td>
<td>94</td>
<td>7.84</td>
<td></td>
</tr>
<tr>
<td>1410 11:15</td>
<td>335</td>
<td>179</td>
<td>44.5</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>1445 11:45</td>
<td>335</td>
<td>179</td>
<td>44.5</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>12:00 12:00</td>
<td>356</td>
<td>179</td>
<td>44.5</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>1420 12:15</td>
<td>357</td>
<td>175</td>
<td>98.5</td>
<td>8.21</td>
<td></td>
</tr>
<tr>
<td>1500 1:00</td>
<td>357</td>
<td>175</td>
<td>98.5</td>
<td>8.21</td>
<td></td>
</tr>
<tr>
<td>1530 2:00</td>
<td>361</td>
<td>173.5</td>
<td>100.0</td>
<td>8.33</td>
<td></td>
</tr>
<tr>
<td>1615 3:00</td>
<td>350</td>
<td>176.5</td>
<td>97.0</td>
<td>8.08</td>
<td></td>
</tr>
<tr>
<td>1650 4:00</td>
<td>350</td>
<td>171.0</td>
<td>102.5</td>
<td>8.54</td>
<td></td>
</tr>
<tr>
<td>1730 5:00</td>
<td>362</td>
<td>170.5</td>
<td>103.0</td>
<td>8.58</td>
<td></td>
</tr>
<tr>
<td>1815 6:00</td>
<td>360</td>
<td>169.0</td>
<td>105.5</td>
<td>8.80</td>
<td></td>
</tr>
<tr>
<td>6:00 Adjusted engine speed to reduce rate to 350 gpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3430 7:00</td>
<td>350</td>
<td>174</td>
<td>19.5</td>
<td>8.79</td>
<td></td>
</tr>
<tr>
<td>3490 7:40</td>
<td>347</td>
<td>175.0</td>
<td>98.5</td>
<td>8.20</td>
<td></td>
</tr>
<tr>
<td>3550 9:00</td>
<td>350</td>
<td>174.2</td>
<td>14.3</td>
<td>8.28</td>
<td></td>
</tr>
<tr>
<td>3610 10:00</td>
<td>351</td>
<td>171.5</td>
<td>102.0</td>
<td>8.50</td>
<td></td>
</tr>
<tr>
<td>3610 11:00</td>
<td>353</td>
<td>171.5</td>
<td>102.0</td>
<td>8.50</td>
<td></td>
</tr>
<tr>
<td>3630 12:00</td>
<td>353</td>
<td>171.5</td>
<td>102.0</td>
<td>8.50</td>
<td></td>
</tr>
<tr>
<td>3630 1:00</td>
<td>353</td>
<td>171.5</td>
<td>102.0</td>
<td>8.50</td>
<td></td>
</tr>
</tbody>
</table>

Note: Chlorides data is not fully visible.
PUMPING TEST RECORD

For

Hanapepe

Well 25-1

(name) (No.)

<table>
<thead>
<tr>
<th>Island</th>
<th>Project or Job No.</th>
<th>19</th>
</tr>
</thead>
</table>

Description of Well--
1. Elevation: ground surface **ft.**, top of casing **ft.**, referenced to **benchmark**
2. Total depth of well **ft.**, or **ft.** elevation, **msl**
3. **in.** solid casing to **ft.** depth, perforated to **ft.** depth
4. Static water level on **ft.** depth, perforated to **ft.** depth
5. **method** measured ground surface, top of casing; or **ft.** elevation, **msl**

Description of Pump and Pump Setting--
6. **type pump with** stage bowl assembly
7. Gasoline diesel, electric, power with **horsepower**
8. Shaft speed: **rpm at** gpm flow
9. Depth of pump intake: **ft.** below **; or** **ft.** elevation, **msl**
10. Depth of airline bottom: **ft.** below **; or** **ft.** elevation, **msl**
11. Center of gage: **ft.** elevation, **msl**. Flow measured with

## Date & Time	Pumping rate (gpm)	Airline, manometer Rdgs (feet)	Drawdown (feet)	Chlorides (ppm)	Temperature (°F)
3/8 6:00 A | 347 | 171.8 | 101.7 | 8.48 | 73
3/10 8:00 A | 347 | 172.0 | 101.5 | 8.46 | 73
3/10 4:00 A | 345 | 172.0 | 101.5 | 8.46 | 73
5/10 5:00 A | 346 | 171.5 | 102.0 | 8.50 | 73
6/10 6:00 A | 350 | 171.0 | 102.5 | 8.54 | 41.5
7/10 7:00 A | 348 | 170.0 | 103.5 | 8.63 | 73
8/10 8:00 A | 347 | 169.9 | 103.6 | 8.63 | 73
9/10 9:00 A | 349 | 169.9 | 103.6 | 8.63 | 73
4/10 10:00 A | 349 | 169.7 | 103.8 | 8.65 | 73
4/10 11:00 A | 346 | 169.3 | 104.2 | 8.68 | 73
4/10 12:00 A | 349 | 169.2 | 104.3 | 8.68 | 73
4/10 1:00 P | 348 | 169.2 | 104.3 | 8.69 | 73
4/10 2:00 A | 348 | 169.0 | 104.5 | 8.70 | 73
4/10 3:00 P | 348 | 169.8 | 104.7 | 8.72 | 41.6
4/10 4:00 P | 347 | 169.5 | 105.0 | 1.75 | 73
4/10 5:00 P | 344 | 169.0 | 105.5 | 8.79 | 42.0
4/10 6:00 P | 344 | 166.5 | 106.0 | 8.91 | 73
9:00 P | - | - | - | 41.8 | -
5/10 10:00 A | 347 | 166.0 | 107.5 | 8.96 | 73
5/10 12:00 P | 346 | 166.0 | 107.5 | 8.96 | 40.5
5/10 8:00 A | 342 | 166.0 | 107.5 | 9.04 | 41.5
5/10 3:00 A | 345 | 164.0 | 109.5 | 9.12 | 73
Dowald 8/63

PUMPING TEST RECORD

for

\(\text{HANAPEN} \) \(\text{Well 25-1} \)

(name) (No.)

Island Project or Job No. 19

Description of Well--
1. Elevation: ground surface ft., top of casing ft., referenced to benchmark
2. Total depth of well ft.; or ft. elevation, msl
3. in. solid casing to ft. depth, perforated to ft. depth
4. Static water level on 19 ft. below ground surface, top of casing; or ft. elevation, msl measured method

Description of Pump and Pump Setting--
5. type pump with stage bowl assembly
6. Gasoline diesel, electric, power with horsepower
7. Shaft speed: rpm at gpm flow
8. Depth of pump intake: ft. below or ft. elevation, msl
9. Depth of airline bottom: ft. below or ft. elevation, msl
10. Center of gage: ft. elevation, msl. Flow measured with

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Pumping rate (gpm)</th>
<th>Airline, manometer Rdgs (psi)</th>
<th>(feet)</th>
<th>Drawdown (feet)</th>
<th>Chlorides (ppm)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/24 5:46</td>
<td>342</td>
<td>165.0</td>
<td>10.5</td>
<td>9.04</td>
<td>44.5</td>
<td>73</td>
</tr>
<tr>
<td>8/25 5:55</td>
<td>344</td>
<td>165.6</td>
<td>10.7</td>
<td>8.91</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7:00A 7:00A</td>
<td>0</td>
<td>165.8</td>
<td>10.7</td>
<td>8.98</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7:00A 7:00A</td>
<td></td>
<td>225.0</td>
<td>4.9</td>
<td>9.94</td>
<td>Stopped Pump</td>
<td>-</td>
</tr>
<tr>
<td>7:01</td>
<td></td>
<td>22.5</td>
<td>1.9</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:05</td>
<td></td>
<td>22.5</td>
<td>1.5</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:02</td>
<td></td>
<td>229.5</td>
<td>4.4</td>
<td>3.67</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:04</td>
<td></td>
<td>230.1</td>
<td>43.4</td>
<td>3.62</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:05</td>
<td></td>
<td>231.5</td>
<td>43.4</td>
<td>3.62</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:06</td>
<td></td>
<td>231.9</td>
<td>41.6</td>
<td>3.47</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:07</td>
<td></td>
<td>232.0</td>
<td>44.5</td>
<td>3.46</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:08</td>
<td></td>
<td>232.3</td>
<td>41.2</td>
<td>3.43</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:09</td>
<td></td>
<td>232.5</td>
<td>41.0</td>
<td>3.42</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:10</td>
<td></td>
<td>232.6</td>
<td>40.9</td>
<td>3.41</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:12</td>
<td></td>
<td>233.0</td>
<td>40.5</td>
<td>3.37</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:14</td>
<td></td>
<td>233.4</td>
<td>40.1</td>
<td>3.34</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:16</td>
<td></td>
<td>233.7</td>
<td>39.9</td>
<td>3.32</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:18</td>
<td></td>
<td>234.0</td>
<td>39.5</td>
<td>3.29</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7:20</td>
<td></td>
<td>234.8</td>
<td>39.2</td>
<td>3.27</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
PUMPING TEST RECORD

for

Hanapepe Well 25-1

Island _______ Project or Job No. _____ 19

Description of Well--
1. Elevation: ground surface ___ ft., top of casing ___ ft., table ___ ft., referenced to ______ benchmark
2. Total depth of well ___ ft., or ___ ft. elevation, msl
3. ___ in. solid casing to ___ ft. elevation, perforated to ___ ft. depth
4. Static water level on ___ 19: ___ ft. below ground surface, top of casing, or ___ ft. elevation, msl measured ___ method

Description of Pump and Pump Setting--
5. ___ type pump with ___ stage bowl assembly
6. Gasoline diesel, electric, power with ___ horsepower
7. Shaft speed: ___ rpm at ___ gpm flow
8. Depth of pump intake: ___ ft. below ___; or ___ ft. elevation, msl
9. Depth of airline bottom: ___ ft. below ___; or ___ ft. elevation, msl
10. Center of gage: ___ ft. elevation, msl. Flow measured with ___

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Pumping rate (gpm)</th>
<th>Airline, manometer Rdgs</th>
<th>Drawdown (feet)</th>
<th>Chlorides (ppm)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/7/62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>u</td>
<td>234.5</td>
<td>80</td>
<td>3.25</td>
<td></td>
</tr>
<tr>
<td>7:25</td>
<td>u</td>
<td>234.7</td>
<td>38.9</td>
<td>3.23</td>
<td></td>
</tr>
<tr>
<td>7:30</td>
<td>u</td>
<td>235.5</td>
<td>38.0</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>7:35</td>
<td>u</td>
<td>235.0</td>
<td>37.7</td>
<td>3.14</td>
<td></td>
</tr>
<tr>
<td>7:40</td>
<td>u</td>
<td>236.0</td>
<td>37.5</td>
<td>3.13</td>
<td></td>
</tr>
<tr>
<td>7:45</td>
<td>u</td>
<td>237.1</td>
<td>36.4</td>
<td>3.03</td>
<td></td>
</tr>
<tr>
<td>7:50</td>
<td>u</td>
<td>237.2</td>
<td>36.3</td>
<td>3.02</td>
<td></td>
</tr>
<tr>
<td>7:00</td>
<td>u</td>
<td>238.2</td>
<td>35.3</td>
<td>2.94</td>
<td></td>
</tr>
<tr>
<td>9:10</td>
<td>u</td>
<td>239.7</td>
<td>33.8</td>
<td>2.87</td>
<td></td>
</tr>
<tr>
<td>9:20</td>
<td>u</td>
<td>240.0</td>
<td>33.5</td>
<td>2.79</td>
<td></td>
</tr>
<tr>
<td>9:30</td>
<td>u</td>
<td>240.5</td>
<td>33.0</td>
<td>2.75</td>
<td></td>
</tr>
<tr>
<td>9:40</td>
<td>u</td>
<td>241.2</td>
<td>32.3</td>
<td>2.69</td>
<td></td>
</tr>
<tr>
<td>9:50</td>
<td>u</td>
<td>241.7</td>
<td>31.8</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td>u</td>
<td>242.7</td>
<td>30.9</td>
<td>2.57</td>
<td></td>
</tr>
<tr>
<td>10:05</td>
<td>u</td>
<td>243.0</td>
<td>30.5</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>10:10</td>
<td>u</td>
<td>243.6</td>
<td>29.9</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>u</td>
<td>244.7</td>
<td>28.9</td>
<td>2.40</td>
<td></td>
</tr>
<tr>
<td>10:45</td>
<td>u</td>
<td>245.4</td>
<td>28.1</td>
<td>2.34</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>u</td>
<td>246.1</td>
<td>27.4</td>
<td>2.28</td>
<td></td>
</tr>
<tr>
<td>11:30</td>
<td>u</td>
<td>247.3</td>
<td>26.2</td>
<td>2.18</td>
<td></td>
</tr>
<tr>
<td>11:45</td>
<td>u</td>
<td>248.5</td>
<td>25.0</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>12:15</td>
<td>u</td>
<td>249.2</td>
<td>24.3</td>
<td>2.03</td>
<td></td>
</tr>
</tbody>
</table>
PUMPING TEST RECORD

for

Hanapepe (name)

Well \(\frac{15}{2} \) (No.)

Island Project or Job No. 19

Description of Well--

1. Elevation: ground surface \(\text{ft.} \), top of casing \(\text{ft.} \), table \(\text{ft.} \), referenced to \(\text{benchmark} \)
2. Total depth of well \(\text{ft.} \), or \(\text{ft. elevation, msl} \)
3. \(\text{in.} \) solid casing to \(\text{ft. depth} \), perforated to \(\text{ft. depth} \)
4. Static water level on \(\text{ft. depth} \), \(\text{ft. below ground surface, top of casing; or \(\text{ft. elevation, msl} \) measured \(\text{method} \)

Description of Pump and Pump Setting--

5. \(\text{type pump with \(\text{stage bowl assembly} \)
6. Gasoline diesel, electric, power with \(\text{horsepower} \)
7. Shaft speed: \(\text{rpm at \(\text{gpm flow} \)
8. Depth of pump intake: \(\text{ft. below \(\text{ft. elevation, msl} \)
9. Depth of airline bottom: \(\text{ft. below \(\text{ft. elevation, msl} \)
10. Center of gage: \(\text{ft. elevation, msl} \). Flow measured with \(\text{method} \)
11. Test conducted by

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Pumping rate (gpm)</th>
<th>Airline, manometer Rdgs</th>
<th>Drawdown (feet)</th>
<th>Chlorides (ppm)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/4/64 11:30</td>
<td>0</td>
<td>249.8</td>
<td>23.7</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>4/4/64 12:30</td>
<td>0</td>
<td>251.8</td>
<td>21.7</td>
<td>1.81</td>
<td></td>
</tr>
<tr>
<td>4/4/64 3:30</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>1.15</td>
<td></td>
</tr>
</tbody>
</table>
No. 1748-12, Semi-Logarithmic
3 cycles x 10 to the inch
The A. Lietz Co., San Francisco
Made in U.S.A.

\(t_0 = \text{time since pumping stopped, in minutes} = 7,000 \text{ min} \quad 3/4/66 \)
<table>
<thead>
<tr>
<th>RPM</th>
<th>Output (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td>10.87</td>
</tr>
<tr>
<td>1555</td>
<td>11.25</td>
</tr>
<tr>
<td>1675</td>
<td>11.62</td>
</tr>
<tr>
<td>1735</td>
<td>11.92</td>
</tr>
<tr>
<td>1790</td>
<td>12.05</td>
</tr>
<tr>
<td>1795</td>
<td>Adjust Q to 550 gpm</td>
</tr>
<tr>
<td>1800</td>
<td>7.83</td>
</tr>
<tr>
<td>1810</td>
<td>7.71</td>
</tr>
<tr>
<td>1815</td>
<td>7.66</td>
</tr>
<tr>
<td>1830</td>
<td>7.58</td>
</tr>
<tr>
<td>1845</td>
<td>7.52</td>
</tr>
<tr>
<td>1860</td>
<td>7.25</td>
</tr>
<tr>
<td>1890</td>
<td>Adjust Valve</td>
</tr>
<tr>
<td>1895</td>
<td>7.58</td>
</tr>
<tr>
<td>1920</td>
<td>7.63</td>
</tr>
<tr>
<td>1980</td>
<td>7.63</td>
</tr>
<tr>
<td>2040</td>
<td>7.67</td>
</tr>
<tr>
<td>2045</td>
<td>Engine Missing</td>
</tr>
<tr>
<td>2050</td>
<td>Adjust Valve</td>
</tr>
<tr>
<td>2055</td>
<td>7.83</td>
</tr>
</tbody>
</table>
| 2057 | Adjust Valve if oil
<p>| 2060 | 7.71 |
| 2070 | 7.71 |
| 2100 | 7.21 |
| 2110 | Motor Missing |
| 2113 | Adjust Valve |
| 2130 | 7.71 |
| 2160 | 7.75 |</p>
<table>
<thead>
<tr>
<th>Value</th>
<th>Adjust Value</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.92</td>
<td>7.67</td>
<td>8.04</td>
</tr>
<tr>
<td>7.63</td>
<td>7.63</td>
<td>8.50</td>
</tr>
<tr>
<td>7.63</td>
<td>7.63</td>
<td>8.04</td>
</tr>
<tr>
<td>7.42</td>
<td>7.91</td>
<td>7.91</td>
</tr>
<tr>
<td>2.85</td>
<td>2.84</td>
<td>2.58</td>
</tr>
<tr>
<td>6.63</td>
<td>6.50</td>
<td>6.63</td>
</tr>
<tr>
<td>6.63</td>
<td>6.63</td>
<td>6.67</td>
</tr>
<tr>
<td>6.71</td>
<td>6.71</td>
<td>6.71</td>
</tr>
<tr>
<td>Value</td>
<td>Adjust Value</td>
<td>25 E62</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>2160</td>
<td>6.79</td>
<td>347</td>
</tr>
<tr>
<td>2185</td>
<td>6.75</td>
<td>336</td>
</tr>
<tr>
<td>2187</td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>2190</td>
<td>6.91</td>
<td>350</td>
</tr>
<tr>
<td>2805</td>
<td>7.04</td>
<td>405</td>
</tr>
<tr>
<td>2820</td>
<td>7.04</td>
<td></td>
</tr>
<tr>
<td>2850</td>
<td>7.30</td>
<td></td>
</tr>
<tr>
<td>2880</td>
<td>7.41</td>
<td></td>
</tr>
<tr>
<td>2915</td>
<td>Clear fluid</td>
<td></td>
</tr>
<tr>
<td>2940</td>
<td>7.46</td>
<td>252</td>
</tr>
<tr>
<td>2970</td>
<td>7.46</td>
<td>256</td>
</tr>
<tr>
<td>2000</td>
<td>7.88</td>
<td>352</td>
</tr>
<tr>
<td>3060</td>
<td>8.21</td>
<td>357</td>
</tr>
</tbody>
</table>

Tell Jon, G & I will be back Fri or Sat.
Tell Jon to call 173564 I will be back Fri if well enough.

25 E62

#1 Recovery

2nd Check will pump across #7
9:00 12 Mq
1. Check with Rich when they will be shutting down the pump 0 or 10 to 12 MGP.

 Usually Sat. Noon or after lunch down 12.

2. Take reading 8 hr before & at least 8 hrs after +1 shut down. GA.

3. Check with Jack if he will be ready by Tues. or Thursday. OK if cannot will let RT know.

4. Money may go 1st to the right. We will pay pump test due to 4:00 Friday.

5. Call Richard on #3

6. Manometer? Set?
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.130</td>
<td>8.33</td>
<td></td>
</tr>
<tr>
<td>3.250</td>
<td>8.54</td>
<td></td>
</tr>
<tr>
<td>3.310</td>
<td>8.58</td>
<td>Adjust "Q 3.375"</td>
</tr>
<tr>
<td>3.430</td>
<td>8.29</td>
<td></td>
</tr>
<tr>
<td>3.490</td>
<td>8.20</td>
<td></td>
</tr>
<tr>
<td>3.550</td>
<td>8.28</td>
<td></td>
</tr>
<tr>
<td>3.610</td>
<td>8.50</td>
<td></td>
</tr>
<tr>
<td>3.700</td>
<td>8.52</td>
<td></td>
</tr>
<tr>
<td>3.790</td>
<td>8.50</td>
<td></td>
</tr>
<tr>
<td>3.850</td>
<td>8.48</td>
<td></td>
</tr>
<tr>
<td>3.910</td>
<td>8.46</td>
<td></td>
</tr>
<tr>
<td>3.970</td>
<td>8.46</td>
<td></td>
</tr>
<tr>
<td>4.030</td>
<td>8.50</td>
<td></td>
</tr>
<tr>
<td>4.090</td>
<td>8.54</td>
<td></td>
</tr>
<tr>
<td>4.150</td>
<td>8.63</td>
<td></td>
</tr>
<tr>
<td>4.210</td>
<td>8.68</td>
<td></td>
</tr>
<tr>
<td>4.330</td>
<td>8.65</td>
<td></td>
</tr>
<tr>
<td>4.390</td>
<td>8.68</td>
<td></td>
</tr>
<tr>
<td>4.450</td>
<td>8.68</td>
<td></td>
</tr>
</tbody>
</table>

41.5 ppm
\[
\begin{array}{c}
\sqrt{110} \\
\hline
120 \\
\hline
127.0 \\
\hline
73.5 \\
\hline
167.2 \\
\hline
106.2 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
2 \sqrt{13.5} \\
\hline
2 \times 4.0 \\
\hline
8.0 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
5350 \\
\hline
120 \\
\hline
5470 \\
\end{array}
\]
<table>
<thead>
<tr>
<th>Time</th>
<th>E.T. min</th>
<th>Hg. Reading in</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:00</td>
<td>0</td>
<td>125.8</td>
</tr>
<tr>
<td>7:00:30</td>
<td>0:30</td>
<td>227.0</td>
</tr>
<tr>
<td>7:01:00</td>
<td>1:00</td>
<td>227.5</td>
</tr>
<tr>
<td>7:01:30</td>
<td>1:30</td>
<td>228.0</td>
</tr>
<tr>
<td>7:02:00</td>
<td>2:00</td>
<td>228.5</td>
</tr>
<tr>
<td>7:02:30</td>
<td>2:30</td>
<td>230.5</td>
</tr>
<tr>
<td>7:03:00</td>
<td>3:00</td>
<td>230.0</td>
</tr>
<tr>
<td>7:03:30</td>
<td>3:30</td>
<td>230.1</td>
</tr>
<tr>
<td>7:04:00</td>
<td>4:00</td>
<td>230.1</td>
</tr>
<tr>
<td>7:04:30</td>
<td>4:30</td>
<td>231.5</td>
</tr>
<tr>
<td>7:05</td>
<td>5:00</td>
<td>231.5</td>
</tr>
<tr>
<td>7:06</td>
<td>6:00</td>
<td>232.0</td>
</tr>
<tr>
<td>7:07</td>
<td>7:00</td>
<td>232.3</td>
</tr>
<tr>
<td>7:09</td>
<td>8:00</td>
<td>232.5</td>
</tr>
<tr>
<td>7:09</td>
<td>9:00</td>
<td>232.6</td>
</tr>
<tr>
<td>7:10</td>
<td>10:00</td>
<td>233.0</td>
</tr>
<tr>
<td>7:11</td>
<td>11:00</td>
<td>233.4</td>
</tr>
<tr>
<td>7:14</td>
<td>12:00</td>
<td>233.7</td>
</tr>
<tr>
<td>7:16</td>
<td>14:00</td>
<td>234.0</td>
</tr>
<tr>
<td>7:18</td>
<td>15:00</td>
<td>234.3</td>
</tr>
<tr>
<td>7:20</td>
<td>17:00</td>
<td>234.5</td>
</tr>
<tr>
<td>7:22</td>
<td>22:00</td>
<td>234.7</td>
</tr>
<tr>
<td>7:25</td>
<td>25:00</td>
<td>235.5</td>
</tr>
<tr>
<td>7:30</td>
<td>30:00</td>
<td>235.8</td>
</tr>
<tr>
<td>7:35</td>
<td>35:00</td>
<td>236.0</td>
</tr>
<tr>
<td>7:40</td>
<td>40:00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:45</td>
<td>231.1</td>
</tr>
<tr>
<td>7:50</td>
<td>231.2</td>
</tr>
<tr>
<td>8:00</td>
<td>238.2</td>
</tr>
<tr>
<td>8:10</td>
<td>237.2</td>
</tr>
<tr>
<td>8:20</td>
<td>237.7</td>
</tr>
<tr>
<td>8:30</td>
<td>240.0</td>
</tr>
<tr>
<td>8:40</td>
<td>240.5</td>
</tr>
<tr>
<td>8:50</td>
<td>241.2</td>
</tr>
<tr>
<td>9:00</td>
<td>241.3</td>
</tr>
<tr>
<td>9:15</td>
<td>243.6</td>
</tr>
<tr>
<td>9:30</td>
<td>244.7</td>
</tr>
<tr>
<td>9:45</td>
<td>245.4</td>
</tr>
<tr>
<td>10:00</td>
<td>246.1</td>
</tr>
<tr>
<td>10:15</td>
<td>247.3</td>
</tr>
<tr>
<td>10:30</td>
<td>248.5</td>
</tr>
<tr>
<td>11:00</td>
<td>249.2</td>
</tr>
<tr>
<td>11:15</td>
<td>249.8</td>
</tr>
<tr>
<td>11:30</td>
<td>251.8</td>
</tr>
<tr>
<td>11:45</td>
<td>252.3</td>
</tr>
</tbody>
</table>

\[
\text{Length of air line from top of casing:} \quad 3\text{.50 p.m.}
\]

\[
\begin{align*}
21' - 11/4'' & \quad \text{Chw. - 8.05.8 Eds. Notice.} \\
19' - 6 3/4'' & \quad 19.56 \\
21' - 0 4/8'' & \quad 21.02 \\
21' - 13/4'' & \quad 21.15 \\
\hline
& \quad 84.81
\end{align*}
\]

\[
31.55 x 2 \quad \text{WL. measurement} \quad 3/4/66
\]

\[
\text{WL.} + 15.97
\]
WATER LEVEL MEASUREMENTS WELL #5

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Reading 1</th>
<th>Reading 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1/64</td>
<td>10:05 AM</td>
<td>16.5"</td>
<td>1.37'</td>
</tr>
<tr>
<td>3/2/64</td>
<td>1:35 PM</td>
<td>17.25"</td>
<td>1.44'</td>
</tr>
<tr>
<td>3/3/64</td>
<td>1:25 PM</td>
<td>16.5"</td>
<td>1.37'</td>
</tr>
</tbody>
</table>

PLANTATION WELLS

- **Pump #3 (Manuka)** - Pumping 12 mgd on 2/28/66 (Clorides = 127 ppm)
Pumping 24 mgd beginning 4:15 AM 3/1/66

- **Pump #2 (Midway)** - Pumping 5 mgd continuously from surface water diverted at a point upstream

- **Pump #1 (Makai)** - Pumping 5 mgd for 8 hrs on 2/29/66 from sump in river bed.