<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EX-1</td>
<td>NA</td>
<td>1805-10N</td>
<td>May-90</td>
<td>50.5</td>
<td>50.5</td>
<td>6.0</td>
<td>4.0</td>
<td>4.5</td>
<td>PVC Sch 40</td>
<td>9.5 - 49.5</td>
<td>12.5</td>
<td>14.39</td>
<td>01-Nov-90</td>
<td>927.00</td>
<td>01-Feb-90</td>
<td>21 18'20.28</td>
<td>158 05'57.76</td>
<td>Continuous Core (46")</td>
<td></td>
</tr>
<tr>
<td>EX-2</td>
<td>NA</td>
<td>1805-20N</td>
<td>May-90</td>
<td>351.5</td>
<td>270</td>
<td>6.5 (to 80 ft)</td>
<td>1.939</td>
<td>2.375</td>
<td>PVC Sch 80</td>
<td>45 - 95</td>
<td>10</td>
<td>10.81</td>
<td>06-Oct-89</td>
<td>267.62</td>
<td>06-Oct-89</td>
<td>21 18'02.77</td>
<td>158 05'59.40</td>
<td>Continuous Core (80")</td>
<td></td>
</tr>
<tr>
<td>PW-1</td>
<td>NA</td>
<td>1805-04</td>
<td>Apr-89</td>
<td>50</td>
<td>50</td>
<td>24.0</td>
<td>16.0</td>
<td>-</td>
<td>Steel</td>
<td>12 - 50</td>
<td>12</td>
<td>12.39</td>
<td>Apr-89</td>
<td>923.20</td>
<td>01-Nov-89</td>
<td>21 18'20.22</td>
<td>158 05'57.87</td>
<td>Completed Jan., 1990</td>
<td></td>
</tr>
<tr>
<td>PW-2</td>
<td>NA</td>
<td>1805-02</td>
<td>Apr-89</td>
<td>50</td>
<td>50</td>
<td>24.0 (to 54 ft)</td>
<td>16.0</td>
<td>-</td>
<td>Steel</td>
<td>12 - 54</td>
<td>13.5</td>
<td>927.00</td>
<td>441.94</td>
<td>01-Aug-90</td>
<td>158 05'55.80</td>
<td>Backfilled, Dec. 1989</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PW-3</td>
<td>NA</td>
<td>1805-04</td>
<td>May-90</td>
<td>57</td>
<td>57</td>
<td>24.0 (to 43 ft)</td>
<td>16.0</td>
<td>-</td>
<td>Steel</td>
<td>12 - 51</td>
<td>13.65</td>
<td>923.62</td>
<td>292.03</td>
<td>01-Aug-90</td>
<td>158 05'54.27</td>
<td>Completed Jan., 1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV-5</td>
<td>NA</td>
<td>1805-08</td>
<td>Dec-89</td>
<td>25</td>
<td>25</td>
<td>24.0</td>
<td>11.376</td>
<td>12.75</td>
<td>PVC Sch 80</td>
<td>17 - 25</td>
<td>13.5</td>
<td>923</td>
<td>342</td>
<td>01-Aug-90</td>
<td>158 05'54.77</td>
<td>Completed Jan., 1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV-6</td>
<td>NA</td>
<td>1805-09</td>
<td>Dec-89</td>
<td>42</td>
<td>40</td>
<td>24.0</td>
<td>16.314</td>
<td>16.00</td>
<td>PVC Sch 80</td>
<td>17 - 40</td>
<td>13.5</td>
<td>923</td>
<td>155</td>
<td>01-Aug-90</td>
<td>158 05'52.85</td>
<td>Completed Jan., 1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INJ-1</td>
<td>NA</td>
<td></td>
<td>Feb-89</td>
<td>30</td>
<td>30</td>
<td>6.0</td>
<td>4.0</td>
<td>4.5</td>
<td>PVC Sch 40</td>
<td>18.5 - 28.5</td>
<td>11</td>
<td>637.14</td>
<td>844.00</td>
<td>01-Aug-11.27</td>
<td>158 05'51.52</td>
<td>Phase I Injection Wells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INJ-2</td>
<td>NA</td>
<td></td>
<td>Feb-89</td>
<td>30</td>
<td>30</td>
<td>6.0</td>
<td>4.0</td>
<td>4.5</td>
<td>PVC Sch 40</td>
<td>18.5 - 28.5</td>
<td>11</td>
<td>597.14</td>
<td>844.00</td>
<td>01-Aug-11.06</td>
<td>158 05'51.60</td>
<td>Phase I Injection Wells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INJ-3</td>
<td>NA</td>
<td></td>
<td>Jul-89</td>
<td>270</td>
<td>270</td>
<td>17.5 (to 220 ft)</td>
<td>11.376</td>
<td>12.75</td>
<td>PVC Sch 80</td>
<td>0 - 220</td>
<td>10</td>
<td>260.23</td>
<td>867.77</td>
<td>01-Aug-02.78</td>
<td>158 05'54.11</td>
<td>Phase II Injection Wells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INJ-4</td>
<td>NA</td>
<td></td>
<td>Aug-89</td>
<td>305</td>
<td>305</td>
<td>17.5 (to 220 ft)</td>
<td>11.75 (to 305 ft)</td>
<td>12.75</td>
<td>PVC Sch 80</td>
<td>0 - 305</td>
<td>10</td>
<td>259.40</td>
<td>696.30</td>
<td>01-Aug-03.38</td>
<td>158 05'57.35</td>
<td>Phase II Injection Wells</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Brass Pin Elevation
Legends:

- INJ-1: Injection Well Location and Designation
- PW-1: Production Well Location and Designation
- EX-1: Exploration Well Location and Designation
- #: Foundation Exploration Boring by Dames & Moore (1988)

References:
- General Layout Map HTDA 002107 (June 13, 1986).
- Harding Lawson Associates
 Engineers, Geologists & Geophysicists
 Site Plan and Location of Wells and Exploratory Boring
 Kalaeloa Cogeneration Power Plant
 Campbell Industrial Park, Oahu, Hawaii

Drawing Information:
- Kar/gwl: 19032.001.06
- Date: 11/89
- Revised Date: 2/89
State Well No.: 1805-20M

TOTAL BRON/FEET 10.81 feet MSL
TOTAL BRON/FEET 10.51 feet MSL

TOC = 10.81 feet MSL
TOC = 10.51 feet MSL

Steel Casing

2-inch Dia. PVC Blank Casing, Sch. 80

5-inch Dia. PVC Slotted Casing, Sch. 80

2-inch Dia. PVC Blank Casing, Sch. 80

2-inch Dia. PVC Blank Casing, Sch. 80

6 1/2-inch Boring

Sand Pack

CSSI 8x12

GAMMA COUNTS, CPS/ DIV.

Crushed Basalt

Cement Grout

2-inch Dia. PVC Blank Casing, Sch. 80

5-inch Boring

TOC 11.17 feet MSL

TOC 10.91 feet MSL

TOC 10.55 feet MSL

TOC 10.51 feet MSL

Equipment Mobile Drill B-61 Wireline Core

Elevation + 10 FT. MSL

Date: April-May, 1989

Water level at 10 feet

At 25.3 to 35 feet, dense, vuggy and massive coral

At 40.5 feet, grading to CORALLINE RUBBLE

At 51.5 feet, grading pink and chalky

At 60 feet, grading to CORALLINE RUBBLE

FINE CORALLINE SAND grading coarser with depth

WHITE CORALLINE LIMESTONE with vugs

At 95 feet, grading to CORALLINE RUBBLE

At 140 feet, grading with chalky fines

FINE TO MEDIUM SAND

Silty sand at 159.5 feet

At 165 feet, grading with thin zones of coral reef coral

Fine coralline sand and gravel at 178 feet

LIGHT BROWN CORALLINE SANDY Silt

LIGHT BROWN CORALLINE RUBBLE

WHITE WEATHERED CORALLINE LIMESTONE

WHITE CORALLINE RUBBLE with silty fines

WHITE CORALLINE LIMESTONE, chalky, weathered

At 233 feet, grading less weathered

At 24.5 feet, grading with massive coral

At 255 feet, grading with coralline rubble

WHITE CORALLINE RUBBLE, chalky and silty

At 288 feet, grading light gray-brown

LIGHT BROWN CORALLINE LIMESTONE

grading to medium to coarse grained coralline sandstone

WHITE CORALLINE RUBBLE, sandy

At 319 feet, very silty

WHITE POORLY-GRADED CORALLINE SAND

with silt and gravel

WHITE TO LIGHT BROWN CORALLINE RUBBLE, silty

At 349 feet, grading light brown

Bottom of boring at 351.5 feet, 05/01/89.
Equipment: Bucyrus Erie 60L Cable Tool
Elevation: ± 12 feet Date: April 1989

WHITE SILTY GRAVEL (GP)
dry, loose, (fill)

WHITE LIMESTONE - blocky, moderately fractured, moderately hard, moderately weathered
at 2.5 feet, hard

at 5.0 feet, very fine-grained, moderately hard, calcite cement inclusions, iron oxide staining

very soft drilling 8 to 9.5 feet

at 10.0 feet, skeletal grains, many small cavities, 1 percent clay infilling, moderately hard, moderately weathered
at 11.6 feet, highly cemented with cryptocrystalline calcite, solution vugs
at 13.3 feet, micrite partings with medium grained sand and iron oxide
at 15.1 feet, color change to GRAYISH ORANGE
at 16.1 feet, fracture at 45 degrees to vertical

at 17.9 feet, color change to WHITE, large vugs up to 1/2-inch diameter, solution channels, moderately well cemented

at 23.3 feet, large mollusk shell imprints, increase in porosity to 25 percent, white sparry calcite infilling 1 percent

at 27.3 feet, becoming very hard, < 10 percent fine- to coarse-grained sand, infilling in cavities, very well cemented
at 29.1 feet, cavities up to 2-inch diameter with secondary aragonite crystals, iron oxide staining

at 34.0 feet, becoming poorly cemented, very fine-grained matrix, clay, white, plastic in bottom of sample

at 39.6 feet, decreasing clay content, increasing calcite concentration

at 42.6 feet, becoming well cemented, no clay, shell fragments, minor iron oxide staining

at 46.3 feet, color change to PALE YELLOWISH ORANGE, moderately well cemented