DSPSE Asteroid Flyby Operations

Presentation To Engineering

8 October 1992

Note: If you have comments, information, or corrections, please contact Lou Wheatcraft @ (713)280-1892 or send comments via QuickMail or Connect.
DSPSE Asteroid Flyby Operations

Lunar Swingby To Pre-Flyby Activities Overview:

- This Briefing Covers Activities From Lunar Swingby To The Post Geographos Flyby Portion Of The Geographos Transfer Trajectory & Is Divided Into Three Phases:
 - Lunar Swingby To Pre-Flyby (≈ 5 Days Before Flyby).
 - Pre-Flyby Activities To Flyby
 - Post Flyby
- Experiments & Tests Will Be Conducted During This Phase To Fine Tune Algorithms & Operations Associated With The Geographos Flyby
- The Actual Sequence Of Events Will Probably Change From What Is Contained In This Briefing
 - The Baseline Sequence Defines The Envelop Of Operations For Which The Subsystem Hardware & Software Should Be Able To Support
 - The Actual Flyby Sequence Is Being Developed By A Joint Working Group Lead By NRL. Members Include: NRL, LLNL, JPL, & Goddard.
- Activities To Be Conducted During This Phase Include:
 - Full-Up Rehearsals In Preparation For The Geographos Flyby
 - Autonav Experiments
 - Autonomous Scheduling Experiments
 - Sensor Calibrations
 - Other Scientific Observations (TBD)
DSPSE Asteroid Flyby Operations

Geographos Transfer Trajectory: (Based On Original CSC Trajectory)

S/C Trajectory Parameters

<table>
<thead>
<tr>
<th>Date</th>
<th># Days From May 27</th>
<th>Distance From Earth (km)</th>
<th>Velocity S/C - Earth (km/s)</th>
<th>Distance From Geographos (km)</th>
<th>Velocity S/C - Geographos (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 27</td>
<td>0</td>
<td>.36</td>
<td>1.59</td>
<td>94.0</td>
<td>14.9</td>
</tr>
<tr>
<td>Jun 1</td>
<td>7</td>
<td>.85</td>
<td>1.12</td>
<td>90.2</td>
<td>15.2</td>
</tr>
<tr>
<td>Jun 8</td>
<td>14</td>
<td>1.41</td>
<td>0.90</td>
<td>84.5</td>
<td>15.2</td>
</tr>
<tr>
<td>Jun 15</td>
<td>21</td>
<td>1.91</td>
<td>0.79</td>
<td>78.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Jun 22</td>
<td>28</td>
<td>2.35</td>
<td>0.72</td>
<td>71.1</td>
<td>14.6</td>
</tr>
<tr>
<td>Jun 29</td>
<td>35</td>
<td>2.77</td>
<td>0.65</td>
<td>63.7</td>
<td>14.2</td>
</tr>
<tr>
<td>Jul 6</td>
<td>42</td>
<td>3.14</td>
<td>0.62</td>
<td>56.2</td>
<td>13.7</td>
</tr>
<tr>
<td>Jul 13</td>
<td>49</td>
<td>3.52</td>
<td>0.67</td>
<td>48.7</td>
<td>13.1</td>
</tr>
<tr>
<td>Jul 20</td>
<td>56</td>
<td>3.93</td>
<td>0.75</td>
<td>41.2</td>
<td>12.6</td>
</tr>
<tr>
<td>Jul 27</td>
<td>63</td>
<td>4.36</td>
<td>0.88</td>
<td>33.9</td>
<td>12.1</td>
</tr>
<tr>
<td>Aug 3</td>
<td>70</td>
<td>4.92</td>
<td>1.06</td>
<td>26.8</td>
<td>11.6</td>
</tr>
<tr>
<td>Aug 10</td>
<td>77</td>
<td>5.58</td>
<td>1.30</td>
<td>19.9</td>
<td>11.3</td>
</tr>
<tr>
<td>Aug 17</td>
<td>84</td>
<td>6.40</td>
<td>1.54</td>
<td>13.2</td>
<td>11.0</td>
</tr>
<tr>
<td>Aug 24</td>
<td>91</td>
<td>7.39</td>
<td>1.79</td>
<td>6.6</td>
<td>10.9</td>
</tr>
<tr>
<td>Aug 31</td>
<td>98</td>
<td>8.55</td>
<td>2.08</td>
<td>0.04862</td>
<td>10.8</td>
</tr>
<tr>
<td>Sep 7</td>
<td>105</td>
<td>9.91</td>
<td>2.41</td>
<td>6.6</td>
<td>10.9</td>
</tr>
<tr>
<td>Sep 14</td>
<td>112</td>
<td>11.46</td>
<td>2.73</td>
<td>13.2</td>
<td>11.0</td>
</tr>
</tbody>
</table>
DSPSE Asteroid Flyby Operations

Pre-Flyby Geometry:

Note: The X-Z Plane is in the plane of the Ecliptic, thus the Y axis (Solar Array Axis) will be the rotation axis during the flyby.

Point Of Closest Approach

Directio of Motion

Naval Research Laboratory
Washington, DC 20375-5000
Because +Z Axis is pointing to Geographos & the X-Z plane is in the plane of the ecliptic, the amount of attitude change for pointing the high gain antenna (-X axis) to Earth is the EVG angle minus 90°. Thus during the approach, with a EVG = 40°, the rotation for dump is -50°.
DSPSE Asteroid Flyby Operations

Vehicle Distance From Geograph

Point Of Closest Approach
≈ 80 - 200 Km
DSPSE Asteroid Flyby Operations

Orbit Determination & Planning:

- During Asteroid Transfer Portion Of The Mission, Both Pomonkey (Up To ~2 Million Km) & DSN Sites Will Supply Range & Range Rate Data For Spacecraft Orbit Determination To Goddard Space Flight Center (GSFC) & JPL Who Will Compute The State Vector & Supply It To The DMOC.
 - DSN Geographos Transfer Tracking Scenarios: (17 Jun GSFC/CSC Draft Memo)
 -- Actual Scenario Will Be Detailed In GSFC/CSC Study Due Apr 93
 -- Nominal Tracking Scenario (84 Days): Range & Range Rate With 2 One Hour Contacts Per Day With Canberra, & 1 One Hour Contact Per Day With Both Goldstone & Madrid
 -- Before and After Trajectory Burn: Range & Range Rate With 3 One Hour Contacts Per Day With Canberra, & 2 One Hour Contacts Per Day With Both Goldstone & Madrid
 -- Continuous Tracking During Flyby
 -- DSN Requires ~ 45 - 60 Minutes Prepass & ~ 15 Minute Postpass Activities For Each Scheduled Pass (Independent Of Pass Duration)

- Optical & Radar Tracking Of Geographos Coordinated By JPL
 - Goldstone Radar Data Not Available Until ~ 1 Day Prior To Flyby
 - Optical Data Via TBD Observatories (World Wide)