Since its inception in 1978, the Lunar Sample Loan Program has helped stimulate interest in science and space exploration for thousands of students and educators nationwide. In the summer of 1993, we began work on a new document to supplement and enrich the use of the Lunar Sample Disk in the classroom. This new teacher's guide with activities, titled *Apollo—The Next Generation*, was co-written with ten local educators representing grades K—12. These educators are known for their excellence in science instruction. The activities in the new document promote problem-solving and communication skills as well as teamwork using hands-on and debate formats. Each activity consists of specific background information for the teacher as well as reproducible student sheets. During the formal testing phase from mid-October to mid-December 1993, thirty teachers at twenty-one schools across the state, used all or parts of the new document along with the Lunar Sample Disk. Testing sites included: ten elementary schools, five intermediate schools, and six high schools. Educators reported that the background material was easy to use even for the non-science specialist. They found that the activities were adaptable to all the grade levels and were easily integrated into other units such as math, social studies, geography, history, language arts, and art. This lunar disk project parallels a similar one headed by Marilyn Lindstrom for the Antarctic Meteorite Disk.

The activities in *Apollo—The Next Generation* divide into three units: Pre-Apollo, the Apollo Era, and the Future. These correspond, at least roughly, to studies that can be done before the Lunar Sample Disk arrives at a school (Pre-Apollo), while it is in the classroom (Apollo Era), and after the disk has returned to NASA (Future). The Pre-Apollo activities challenge the students' current knowledge of the Moon's geology and exploration. They are asked to choose suitable landing sites based on this knowledge. Students are also given the opportunity to collect rocks to compare to the lunar samples. Careful observations of their own rocks and minerals and interpretations of the rock origins set the stage for the Lunar Disk itself. The Apollo Era activities focus on the rock and soil samples contained in the disk, and the processes that formed them. The lunar surface is examined more closely as are the actual Apollo landing sites and the astronauts' lunar roving vehicle. For more in-depth study, four anomalies are presented to the students for their investigation and interpretation: Why does the Moon have fewer quakes than does the Earth? Why are there no obvious volcanoes on the Moon? Why are almost all the maria on the nearside of the Moon? Why does the Moon currently have such a weak magnetic field? The Future activities spark students' interest in how to sustain life on the Moon. Discussions of land use and balanced life support systems lead to actual construction of models. Students are asked to develop plans for lunar transportation and recreation systems, air and water supplies, temperature control systems, and waste management.

During the testing phase, educators supplemented this curriculum with videos, guest speakers, and family-oriented, telescope-viewing parties. The children were so captivated by the Lunar Sample Disk and related projects that many parents even made special visits to the schools. Teachers have been asked to fill out evaluations and their comments will be incorporated when we revise the materials. *Apollo—The Next Generation* helps educators supplement their science and math curriculum with the excitement and adventure of space exploration. The Lunar Sample Disk is an invaluable tool. We've seen how the study of the Moon comes alive for a new generation of students, many with parents not even old enough to have personal recollections of Neil Armstrong's historic step. The history lesson of our manned space program is intricately tied to the Lunar Sample Disk. Not only can we share this history, but involve the students of today in the dreams of space exploration for tomorrow.